UPC L anguage Specifications
V1.0

Tarek A. El-Ghazawi
School of Computational Sciences
George Mason University
4400 University Drive
Fairfax, VA 22030-4444
tarek@gmu.edu

William W. Carlson
Jesse M. Draper
IDA Center for Computing Sciences
17100 Science Drive
Bowie, MD 20715
{wwc, jdraper }@super.org

February 25, 2001

Acknowledgments

Many scientists have contributed to the ideas and concepts behind these specifications.
They are too many to mention here, but we would like to cite the contributions of David
E. Culler, Kathy Ydlick, Eugene Brooks, and Karen Warren who have contributed to the
initid UPC language concepts and specifications. We aso would like to acknowledge
the role of the participants in the firda UPC workshop, held in May 2000 in Bowie,
Maryland, and in which the specifications of this verson were discussed. In particular
we would like to acknowledge the support and participation of Compag, Cray, HP, Sun,
and CSC. We would like dso to acknowledge the abundant input of Kevin Harris and
Sébastien Chawvin and the efforts of Lauren Smith. Findly, the efforts of Brian Wibecan
and Greg Fischer were invdudble in bringing these specifications to the find (verson
1.0) state.

Table of contents

INTRODUCTIONcooieeieee)
1 SCOPE. ...)
2 NORMATIVE REFERENCES..........cccooiiiieiiieieeieeen,)
3 TERMS, DEFINITIONS AND SYMBOLS.................. 6
4 CONFORMANCE ..., 7
S ENVIRONMENT ..ot 7
5.1 Conceptual Models......o 7
511 Translation ENVIFONMEN ...t e ettt bbb bbbt 7
512 EXECULTON ENVITONIMENL.......coiieiieeriieieieeeieeet bbbttt bbbt 8
6 LANGUAGE........cc oo 10
B.1 NOUALIONS.....oooeeees 10
6.2 Predefined identifiers.......oo. 10
621 THREADS........ccoot ettt st et b e s e e b et b e b et e b e Re et b e b et ne b e s et e b e ne s 11
6.2.2 MY THREAD.......co ettt ettt b et bbb et b bttt e b ne 11
6.2.3 UPC_ IMAX_BLOCK_SI ZE ...ooooooeeessesesseeeeeeeseeesssesssssssssssssees 1
0.3 EXPIESSIONS....ossss 11
6.3.1 Theupc_| 0Cal Si ZEOT OPEIALON ..ottt ssse s s 11
6.3.2 TheupcC_bl OCKSi ZEOT OPEIaLON......ccceveeecieririretreres st snse s 12
6.3.3 TheupC_el eNMBi ZEOTF OPEIALONcccceeverectere sttt s e es s 13
6.34 Shared POINtEr @TNMELICc.cvccescee s 13
6.35 Cast and ASSIGNMENE EXPrESSIONS......c.cvieueiriecieinisessessesesssessesssssssesssssssssssssssessssssssssessssssssssssssesesns 15
6.4 DeClarations.......ooeeeeeeeeeee 15
64.1 TYPE QUAITTIES ..ottt 16
6.4.2 The shared and reference type QUaAlITIErS ... resenas 17
6.4.3 DIECIAIALOIS. ... eueeereeeeetses ettt e b bbb bbbttt 19

6.5 Statementsand BIOCKS.....oooeeeeeeeeeeeeeeeeee 22

6.5.1 BarTier SEBLEIMIENLSc.cuevreierieirireceee ettt e bbb bbb bbbttt 23
6.5.2 [ErAtiON SEALEMENLS ...ttt e bbb bbb bbb bbbt 24
6.6 Preprocessing dir€CtiVES.....oeees 27
6.6.1 UPC PIrBOIMES.......cuceceerereicieieereeecteeseee e 28
7 LIBRARY .o 29
7.1 Standard headers....oeeee 29
7.2 General UtHHTIES. ... 29
721 Termination Of all tNFEAAS..........c.ccu i 30
7.3 Memory allocation functions.........oooe 30
731 Theupc_gl obal _al | 0C fUNCLION........c.cieccecee e 30
732 Theupc_al | _al | 0C fUNCHON.......ccceecce st a s 31
733 Theupc_l ocal _al | 0C fUNCLION ..o 3
734 THEUPC_f I €8 TUNCLION.....ciceccceccee st nenas 32
735 Theupc_t hr @adof FUNCHION......ccic s 33
736 TheupcC_phaseof fUNCLION........ccciere s 33
737 Theupc_addr fi €l d fUNCLON......c..coeerere s 3
T LOCKS...oee 34
74.1 57/ ST A
742 Theupc_| OCK_i Ni t fUNCHON......ciecerecce sttt ens 4
743 Theupc_gl obal | ock_al | 0C fUNCHONccveireeecrcce et sesse s 4
744 Theupc_al | 1 ock_al | 0C fUNCLION ...ttt 35
745 THeUPC_| OCK FUNCLION ...ttt 35
74.6 Theupc_| ock_at t @nmpt fUNCLION.......ccorrrce e 36
747 TheupC_UNI OCK FUNCHION. ...ttt 36
7.5 Shared StringHandling........o 36
751 TheUPC_MENTPY FUNCHION. ..ottt 36
752 TheUPC_MEMGEL FUNCLION.......cieeeee ettt snse s sens 37
753 TheUPC_MEMPUL FUNCLION.......iiiceeeeeeeee sttt sss et snse s nens 33
754 TheUPC_MEMBEL FUNCLION.......coccecececcte sttt nens 33
REFERENCES. ... 39

APPENDIX A: UPC VERSUS ANS C SECTION
NUMBERING ... 40

| ntroduction

1

UPC isapadld extensonto ANS C. UPC follows the distributed shared-memory
programming paradigm. The first version of UPC, known as version 0.9, was published
in May of 1999 astechnica report [CARLSON99] at the Institute for Defense Analyses
Center for Computing Sciences.

This verson of UPC, denoted version 1.0, has been initidly discussed at the UPC
workshop, held in Bowie, Maryland, 18-19 May, 2000. The workshop had about 50
participants from industry, government, and academia. This version was adopted with
modifications in the UPC mini workshop meeting held during Supercomputing 2000, in
November 2000, in Ddlas, and findized in February 2001.

1 Scope

This document focuses only on the UPC specifications that extend ANSI C to an explicit
parald C based on the digtributed shared memory modd. All ANSI C specifications as
per 1SO/SEC 9899 [ISO/SECO0] are considered a part of these UPC specifications, and
therefore will not be addressed in this document.

Small parts of ANSI C [ISO/SEC00] may be repeated for self-containment and darity of
a subsequent UPC extengion definition.

2 Normativereferences

The following document and its identified normative references in addition to these
documents condtitute provisions of these UPC specifications. Thiswill not apply to
subsequent revisons of this documen.

| SO/SEC 9899: 1999(E), Programming languages - C [I SO/SECO00]

The section numbering of this document is consistent with the previous document
[1SO/SECOQ]. The correspondence between the subsection of this document and the
previous document, however, is given in Appendix A.

In the beginning of each UPC specifications subsection, the corresponding ANSI-C
[1SO/SECO0] subsection will be noted.

3 Terms, definitions and symbols

For the purpose of these specifications the following definitions apply.

Other terms are defined where they appear in italic type or on the left hand sde of a
gyntacticd rule.

3.1

access
<execution-time action> to read or modify the value of an object by athread.

3.11

local access

<execution-time action> to read or modify, by a given thread, the value of an object in
either the private space of that thread, or in the shared address |ocations that have affinity
to that thread.

3.12

private access
<execution-time action> to read or modify the value of an object in the private address
gpace of agiven thread by that thread.

3.13

remote access

<execution-time action> to read or modify, by a given thread, the vaue of an object
whose addressis in the shared address space portion which has affinity to the other
threads.

3.2
affinity
alogica association of a portion of the shared address space with a given thread.

3.3

shar ed object
A shared object is an object that residesin the shared address space.

3.4

shared pointer
A shared pointer isapointer to a shared object.

3.5

thread
aprogram task in execution with access not only to a private memory space, but also to a
shared memory space which can be accessed by other threads.

4 Conformance

In this documert, “shdl” isto be interpreted as a requirement on a UPC implementation;
conversdly, “shdl not” isto be interpreted as a prohibition.

If a“shdl” or “shal not” requirement of a condraint is violated, the behavior will be
undefined. Undefined behavior isindicated by “undefined behavior” or by the omisson
of any explicit definition of behavior from the UPC specification.

5 Environment

5.1 Conceptual Models

5.1.1 Trandation environment

5.1.1.1 Threadsenvironment
A UPC program is trandated under either a“static THREADS' environment or a

“dynamic THREADS'’ environment. Under the “satic “THREADS’ environment, the
number of threads to be used in execution isindicated to the trandator in an
implementation defined manner. If the actud execution environment differs from this
number of threads, the behavior of the program is undefined.

5.1.2 Execution environment
This subsection provides the UPC parallel extensions of [1SO/SECO00: Sec. 5.1.2)

Each thread has loca data on which it operates and which are logicaly divided into a
private portion and a shared one. All operations on the private portion of the dataare
exactly as described in [ISO/SECO0Q].

Each thread may access shared data that have affinity to any thread; the semantics of
these accesses are described herein.

Except for implied barriers at program startup and termination, thereis no implicit
synchronization among the threads.

Some library cals may imply synchronization among threads. These will be explicitly
noted.

5.1.2.1 Program gartup
In the execution environment of a UPC program, derived from the hosted environment as

defined in ANSI C [ISO/SECOQ], each thread calls the UPC program’s main () function.

5.1.2.2 Program termination
A program is terminated by the termination of al the threads (there is an implied barrier at

program end) or acal tothefunction upc_gl obal _exit ().

2 Thread termination follows the ANSI C definition of program termination in [1SO/SECQ0:
Sec. 5.1.2.2.3]. A thread isterminated by reaching the} that terminatesthe main
function, by acdl to the exit function, or by areturn from theinitid main. Note that
thread termination does not imply the completion of al 1/0 and that shared data allocated
by athread either gaticaly or dynamicadly shal not be freed before UPC program
termination.

Forward references. upc_gl obal _exit (7.2).
5.1.2.3 Program execution

1 Unlessdeclared objects or references are qudified as strict, there is no change to the
ANSI C execution modd as gpplied to an individud thread. Thisimpliesthat trandators
are free to reorder and/or ignore operations (including shared operations) as long as the
restrictions found in [ISO/SECOO: Sec. 5.1.2.3] are observed.

2 A further redtriction gppliesto drict references. For each dtrict reference, the retrictions
found in [ISO/SECOO: Sec. 5.1.2.3] must be observed with respect to dl threadsiif that
reference is diminated (or reordered with respect to al other shared referencesinits
thread).

3 Equaly, the behavior of drict shared references can be defined asfollows. Label each
shared access S(i,j) or R(i,j), where S represents a strict shared access (read or write), R
represents a relaxed shared access (read or write), i isthe thread number making the
a0cess, | is an integer which monotonicaly increases as the evauation of the program (in
the abgiract machine) proceeds from startup through termination. The "abstract order” is
apartia ordering of al accesses by al threads such that an access x(a,b) occurs before
y(c,d) inthe ordering if a==c and b < d. The "actua order(k)" for thread k is another
partia order in which x(ab) occurs before y(c,d) if thread k observes the x access before
it observesthey access. A thread observes al accesses present in the abstract order
which effect either the data written to files by it or its input and output dynamics as
described in [ISO/SECO0: Sect 5.1.2.3]. The least requirements on a conforming
implementation are that:

X(ab) must "occur before’ y(c,d) in actua order(e) if a==canda==eandb<d

X(a,b) must "occur before" y(c,d) in actual order(e) if a==candb<dand ((x ==
Sor(y==9)

UNLESS such aregtriction has no effect on either the data written into files at program
termination OR the input and output dynamics requirements described in [1SO/SECQO:
Sec. 5.1.2.3].

6 Language

6.1 Notations

1 Inthe syntax notation used in this clause, syntactic categories (nonterminas) are
indicated by italic type, and literd words and character set members (terminds) by bol d
t ype. A colon (;) following a nontermind introduces its definition. Alternative
definitions are listed on separate lines, except when prefaced by the words “one of”. An
optiona symbol isindicated by the subscript “opt”, so that
{ expressiongp }

indicates an optional expresson enclosed in braces.

2 When syntactic categories are referred to in the main text, they are not itdlicized and
words are separated by spaces instead of hyphens.

6.2 Predefined identifiers

1 Thissubsection provides the UPC pardle extensons of section 6.4.2.2 in [SO/SECOQ].

10

6.2.1 THREADS

THREADS is an integer equa to the number of independent computationd units, i.e.
threads. Under the “dynamic THREADS' trandation environment, THREADS is a non

modifiable Ivaue of typeint. Under the “satic THREADS' trandation environment,
THREADS is a congtant.

6.2.2 MYTHREAD

MYTHREAD is defined at execution time; it specifies the unique thread index. The range
of posshlevauesis0. . THREADS- 1.

6.2.3 UPC_NMAX BLOCK_SI ZE

UPC_MAX_ BLOCK Sl ZE isa predefined integer congtant value. It indicates the
maximum value dlowed in alayout qudifier for shared data. 1t may be defined in upc.h,
or it may be defined by the compiler.

6.3 Expressions

This subsection provides the UPC parald extensons of section 6.5 in [|SO/SEC0Q].
6.3.1 Theupc_| ocal si zeof operator
upc_Il ocal si zeof unary-expression

upc_Il ocal si zeof (type-name)

Congtraints

Theupc_| ocal si zeof operator shal apply only to shared objects or shared-qudified

types.

11

Semantics

Theupc | ocal si zeof operator returnsthe size, in bytes, of the loca portion of its
operand, which may be a shared object or a shared-qudified type. If theblock Szeis
indefinite and the operand is an expression, it returns zero on dl threads which do not
have affinity to the object. Otherwise it returns the same value on dl threads;, the vaue is
the maximum of the Sze of objects with affinity to any one thread.

Thetype of theresultissize t.

6.3.2 Theupc_bl ocksi zeof operator

upc_bl ocksi zeof unary-expression

upc_bl ocksi zeof (type-name)

Congraints
Theupc_bl ocksi zeof operator shall apply only to shared objects or shared-qudified
types.

Semantics

Theupc bl ocksi zeof operator returns the block sze of the operand, which may be a
shared object or a shared-qudified type. The block szeisthe vaue specified in the

layout qudifier of the type declaration. If thereis no layout qudifier, the block Szeis 1.

Theresult of upc_bl ocksi zeof isacompile-time congant.

If the operator of upc_bl ocksi zeof hasindefinite block Sze, the vaue of

upc_bl ocksi zeof isO.
Thetype of theresult is size t.

Forward references.i ndefi nite bl ock size (64.2).

6.3.3 Theupc_el ensi zeof operator

upc_el ensi zeof unary-expression

upc_el ensi zeof (type-name)

Condraints
Theupc_el enmsi zeof operator shall gpply only to shared objects or shared-qudlified
types.

Semantics

Theupc_el ensi zeof operator returnsthe Sze, in bytes, of the highest-leve
(leftmost) type that is not an array. For non-array objects, upc_el ensi zeof returns

the same vaue as Szeof.

Thetype of thereault is size t.

6.3.4 Shared pointer arithmetic

When an expression that has integer type is added to or subtracted from a shared pointer,
the result has the type of the shared pointer operand. If the shared pointer operand points
to an element of a shared array object, and the shared array is large enough, the result
points to an element of the shared array. If the shared array is declared with indefinite
block size, the result of the shared pointer arithmetic isidenticd to that described for
norma C pointersin [ISO/SECO00 sec. 6.5.6], except that the thread of the new pointer
shdl be the same asthat of the origind pointer. If the shared array has a definite block
gze, then the following example describes pointer arithmetic:

shared [B] int *p, *pl, /* B a positive integer */

int i;

13

After this assgnment the following equations must hold in any UPC implementation. In
each case the / operator indicates truncating integer division and the % operator returns a
nonnegative vaue less than itsright hand sde:

upc_phaseof (pl) == (upc_phaseof(p) + i) % B
upc_t hreadof (pl) == (upc_threadof(p) + (upc_phaseof(p) +
i)/ B) % THREADS

In addition, the correspondence between shared and private addresses and arithmetic is
defined using the fallowing congdructs:

T *P1, *P2;

shared T *S1, *S2;

P1
P2

(T*) S1; /* legal if S1 has affinity to MYTHREAD */
(T*) S2; [/* legal if S2 has affinity to MYTHREAD */

For al S1 and S2 that point to two distinct elements of the same shared array object
which have &ffinity to the same thread:

Sl and P1 shdl point to the same object.
S2 and P2 shall point to the same object.

Theexpresson ((upc_addrfield (S2) - upc_addrfield(S1l)) sl
evduaetothesamevaueas((P2 - P1) * sizeof (T)).

If SL<S2thenupc_addrfi el d(S1) shdlbe< upc_addrfi el d(S2) otherwise
upc_addrfiel d(S1) shdlbe> upc_addrfi el d(S2)

14

Forward references. upc_t hr eadof (7.3.5),upc_phaseof (7.3.6),
upc_addrfield (7.3.7).

6.3.5 Cast and Assignment Expressions

Congraints

A shared type qudifier shall not gppear in atype cast of an object that is not shared-
qudified; i.e., private pointers cannot be cast to shared.

Semantics

A cast or assgnment from one shared pointer to another in which ether thetype sze or
the block size differs resultsin a pointer with a zero phase, unless one of the typesis

“shared void *”, the generic shared pointer.

If apointer with a shared-qualified typeis cast to a pointer whose type is not shared-
qudified, and the affinity of the shared dataiis not to the current threed, the result is
undefined.

6.4 Declarations

UPC extends the declaration ability of C to allow shared types, shared datalayout across
threads, and ordering congtraint specifications.

Consgtraints
The declaration pecifiersin a given declaration shdl not include, either directly or

through one or more typedefs, both strict and r elaxed.

The declaration pecifiersin a given declaration shal not specify more than one block
gze, ether directly or indirectly through one or more typedefs.

15

Syntax
Thefollowing is the declaration definition as per [SO/SECO0Q] section 6.7, repeated here

for sdf-containment and clarity of the subsequent UPC extension specifications.

declaration:
declaration-specifiersinit-declarator-listoy ;

declaration-specifiers:
storage-class-specifier declaration-specifiers,y
type-specifier declaration-specifiers,y
type-qualifier declaration-specifier s,y

function-specifier declaration-specifier s,y

init-declarator-list:
init-declarator

init-declarator-list, init-declarator

init-declarator:
declarator

declarator = initializer

Forward references: drict and relaxed type qudifiers (6.4.2).

6.4.1 Typequdifiers
This subsection provides the UPC parald extensions of section 6.7.3 in [ISO/SECOQ].

Syntax

type-qualifier:
const
restrict
vol atil e

shared-type-qualifier

reference-type-qualifier

16

6.4.2 The shared and reference type quaifiers

Syntax
shared-type-qualifier:

shar ed layout-qualifieropt

reference-type-qualifier:
rel axed

strict

layout-qualifier:
[constant-expressiongt |

[*]

Congraints

A reference type qudifier shdl gppear in aqudifier list only when the list dso containsa
shared type qudifier.

A shared type qudifier can appear anywhere atype qudifier can appear except that it
shdl not appear in the specifier qudifier ligt of astructure declaration unlessit qudifiesa

pointer type.

A layout qudifier of [*] shall not appear in the declaration specifiers of a pointer.

Semantics

An object that has shared-qudified type shal exist in shared memory space and not in
private space. Any thread may reference a shared object. Shared objects are placed in
memory based on an affinity to a particular thread.

An object that has gtrict-qudified type behaves as described in section 5.1.2.3 of this
document.

An object that has relaxed-qudified type behaves asiif it were not drict-qudified.

17

10

The layout qudifier dictates the blocking factor for the type being shared qudified. This
factor is the nonnegative number of consecutive eements (when evauating shared
pointer arithmetic and array declarations), which have affinity to the same thread. If the
optiona constant expression is 0 or is not specified, al objects have affinity to the same
thread. If thereisno layout qudifier, the blocking factor has the default vaue (1). The
blocking factor is dso referred to as the block size.

A layout qudifier indicating thet dl array eements have ffinity to the same thread is
sad to specify indefinite block size.

Theblock szeisapart of the type compatibility.
A shared voi d* pointer isassgnment compatible with any shared pointer type.

If the layout qudifier isof theform * [*] ’ , the shared object is distributed asiif it had a

block sze of

(sizeof(a) / upc_el ensizeof(a) + THREADS — 1) / THREADS,

where‘a’ isthe array being distributed.

EXAMPLE 1. declaration of ashared scdar
strict shared int vy;
grict shared isthe type qudifier

EXAMPLE 2: automatic storage duration

void foo (void) {

shared int x; /[*asharedautomaticvariableisnot allowed */
shared int* y; /*apointer toshared isallowed */

int * shared z; [*a shared automatic variableis not allowed*/

)

18

11 EXAMPLE 3: indde a gtructure
struct foo {
shared int x; /*thisisnotalowed */
shared int* y; /*apointer toashared object isallowed */

}
Forward references: shared array (6.4.3.2), pointer declarator (6.4.3.1).

6.4.3 Declarators

Syntax
1 Thefollowing isthe declarator definition as per [1SO/SECO0Q] section 6.7.5, repesated here
for sdf-containment and clarity of the subsequent UPC extension specifications.

2 declarator:

pointer ,, direct-declarator

3 direct-declarator:
identifier
(declarator)
direct-declarator [type-qualifier-list,, assignment-expressionyy |
direct-declarator [st ati c type-qualifier-list,, assignment-expression |
direct-declarator [type-qualifier-list st at i ¢ assignment-expression |
direct-declarator [type-qualifier-listop *]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listoy)

4 pointer:
* type-qualifier-listop
* type-qualifier-list,y pointer

5 type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

19

Congtraints
No type qudifier list shal specify more than one block size, either directly or indirectly

through one or more typedefs.

No type qudifier lig shdl includebath st ri ct andr el axed ether directly or
indirectly through one or more typedefs.

shar ed shdl not appear in a declarator which has automatic storage duration, unless it
qudifies a pointer type.

Semantics
All gatic non-array shared-qudified objects have affinity with thread zero.

Inside a structure, no data can be declared as shared; only pointers that point to shared
objects can have the shared qudlifier.

6.4.3.1 Pointer dedarators
This subsection provides the UPC parald extensions of section 6.7.5.1 in [|SO/SECO0].

Congraints

The cast of a shared pointer to a private pointer by athread not having affinity with the
referenced object has an undefined result.

Semantics

A shared reference which is cast to non-shared will lose dl qudlities pertaining to being
shared.

Shared objects with affinity to a given thread can be accessed by either shared pointers or
private pointers of that thread.

EXAMPLE 1.
int i, *p;
shared int *q;

g = (shared int *)p; /* is not allowed */

20

if (upc_threadof(q) == MYTHREAD) p = (int *) q;

/* is allowed */

6.4.3.2 Array declarators
This subsection provides the UPC pardld extensions of section 6.7.5.2 in [|SO/SECO0].

Constraints

When aUPC program is trandated in the “dynamic THREADS’ environment and the
type of the array is shared-qudified but not indefinite layout-qudified, the THREADS
Ivaue shdl occur exactly once in one dimension of the array declarator (including
through typedefs). Further, in such cases, the THREADS Ivaue shdl only occur ether
aone or when multiplied by a constant expression.

Semantics

Elements of shared arrays are distributed in around robin fashion, by chunks of block-
gze dements, such that the I-th dement has affinity with thread (floor (i/block_size) %
THREADS).

In an array declaration, the type qudifier appliesto the eements.

EXAMPLE 1. dedlardtionslegd in either Satic or dynamic trandation environments.
shared int x [10* THREADS] ;
shared [] int x [10];

EXAMPLE 2: declarationslegd only in gtatic trandation environment:
shared int x [10+THREADS] ;

shared [] int x [THREADS];

shared int x [10];

21

5

EXAMPLE 3: declaration of ashared array

shared [3] int x [10];

shar ed [3] isthetypequdifier of an array, x, of 10 integers. [3] isthelayout
qudifier.

EXAMPLE 4:
typedef int S[10];

shared [3] S T[3* THREADS] ;

shared [3] agpliestotheunderlyingtypeof T, whichisint, regardless of the
typedef. The array isblocked asif it were declared:

shared [3] int T[3*THREADS] [10];

shared [] double D[100];

All ements of the array D have affinity to threed 0. No THREADS dimenson isdlowed

in the declaration of D.

shared [] long *p;
x =p[i];

All ements referenced by subscripting or otherwise dereferencing p have afinity to the
same thread. That thread may be any thread; it does not have to be thread 0.

6.5 Statements and blocks

1 Thissubsection providesthe UPC parale extensons of section 6.8 in [ISO/SECOQ].

Syntax

1 dsatement:
|abeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
synchronization-statement

6.5.1 Barrier Statements

Syntax
1 synchronization-statement:
upc_notify expressiongp;
upc_wai t expressiongp;
upc_barri er expressiongy

upc_fence;

Congtraints

1 expression shdl bean integer expression.

2 Eachthread shdl execute an dternating sequence of upc_noti fy andupc_wai t
datements, darting withaupc_not i fy andendingwithaupc_wai t statement. A
synchronization phase consists of the execution of &l statements between one

upc_not i fy andthe next.
Semantics

1 Aupc_wait gatement doesnot complete until al threads have completed the
upc_not i fy satement which begins the synchronization phase. Note thet thisimplies
that dl threads are in the same synchronization phase asthey completetheupc_wai t

satement.

23

Theupc _f ence gatement isequivadent to anull drict reference. Thisinsuresthet all

shared references issued before the fence are complete before any after it are issued.

Oneimplementation of upc_f ence (or “remote memory barrier”) may be achieved by a
null grict reference: { st ati ¢ shared strict int x; x = x; }. The

congtruct acts as a fence for the shared references occurring before or after it.

A null grict referenceisimplied beforeaupc_not i f y statement and after a
upc_wait daement.

Theupc_wai t statement will generate aruntime error if the vaue of its expression (if
given) does not equd the vaue of the expression (if given) by theupc_noti fy
gtaterment which starts the synchronization phase.

Theupc_wai t gatement will generate aruntime error if the value of its expression (if
given) differs from any expresson (if given) ontheupc_wai t andupc_noti fy

satements issued by any thread in the current synchronization phase.

Theupc_barri er gatement isequivaent to the compound statement:

{ upc_notify barrier_value; upc_wait barrier_val ue;
EXAMPLE 1. Thefollowing will result in aruntime error:

{ upc_notify; upc_barrier; upc_wait; }
asitisequivaent to

{ upc_notify; upc_notify; upc_wait; upc_wait; }

Betweentheupc_noti fy andtheupc_wai t satements, references to shared data
shdl be permitted, but they have no synchronization relationshiptotheupc_not i fy

andupc_wai t satements.

6.5.2 Iteration statements
This subsection provides the UPC pardld extensons of section 6.8.5 in [ISO/SECOQ].

}

24

Syntax

1 iteration-statement:

whi | e (expression) statement

do statement whi |l e (expression);

for (expressiongpt; EXpPressiongpt; EXPressionyy) Statement
f or (declaration-expressiongpt; EXPressiongpy) Statement

upc_foral |l (expressiong; expressongpt; EXPressiongy; affinityopy) Statement

25

affinity:

EXPressi ONopt
conti nue

Congtraints:

The expression for affinity shall be a pointer to a shared object or an integer expresson.

Semantics:
The &finity field specifies to each thread which iterations of the loop body of the

upc_foral | saementit executes.

When affinity is areference to shared memory space, the loop body of theupc _f or al |
Satement is executed for each iteration in which the vaue of MY THREAD equasthe
vaduedf upc_t hr eadof (affinity).

When affinityisan integer expression, the loop body of theupc_f or al | satement is
executed for each iteration in which the vaue of MY THREAD equdsthe vaue
pmod(affinity, THREADS), where pmod(a,b) is evauated as
(8>=0)(a%0b):(((a%6h)+b)%ob)

When “dfinity” iscont i nue, theloop body of theupc_f or al | datementis
executed for every iteration on every thread.

When no &ffinity is specified, the execution behavior of theupc_f or al | gatement is

the same as it would be if the &ffinity werecont i nue.

If theloop body of aupc_f or al | statement contains one or moreupc_f or al |
satements, either directly or through one or more function cdls, the congtruct is cdled a
"nested upc fordl" statement. In a"nested upc_fordl", the outermost upc _f or al |
Satement that has an affinity expresson whichisnotcont i nue iscdled the
"controlling upc_fordl" satement. All upc_f or al | statements which are not

26

10

"contralling” in a"nested upc_foral" behave asif thar affinity expressions were

conti nue.

Unless dl threads enter the beginning of theupc _f or al | statement during the same
synchronization phase, the behavior is undefined.

8 If any iteretion of aupc_f or al | statement (loop body or control expressions)
produces a side-€effect needed by another iteration of thesameupc_f or al | statement,
the behavior is undefined.

If athread terminates or if it executesaupc_barri er,upc_noti fy,upc_wait or
return statement within the dynamic scope of aupc_f or al | statement, theresult is
undefined. If athread branchesoutsdeaupc_f or al | statement, theresult is

undefined.

EXAMPLE 1: Nested UPC forall:
main () {
int i,j,Kk;
shared float *a, *b, *c;

upc_forall (i=0; i<N, i++; continue)
upc_forall (j=0; j<N; j++ &a[j])
upc_forall (k=0; k<N; k++; &b[K])
a[j] = b[k] * c[i];
}
This example executes dl iterations of the “i” and “k” loops on every thread, and
executes iterations of the*j” loop on those threadswereupc_t hr eadof (&a[j])
equasthe vaue of MYTHREAD.

6.6 Preprocessing directives

This subsection provides the UPC parale extensions of section 6.10 in [ISO/SECO0].

27

6.6.1 UPC pragmas

Semantics

If the preprocessing token upc immediady followsthepr agnma, then no macro
replacement is performed and the directive shdl have one of the following forms:
#pragma upc strict
#pragma upc rel axed
These pragmas control the default behavior of code which follows. Under a dtrict defallt,
all accesses to shared objects that are not qudified as relaxed are in strict mode. Under a
relaxed default, al accesses to shared objects that are not qudified as strict are in relaxed
mode.

These directives do not affect shared objects that are explicitly qualified as either rict or
relaxed.

Unless these directives are used, shared references and objects which are neither strict
qudified nor relaxed qudified behave in an implementation defined manner which is
ether drict default or relaxed default. Users wishing portable programs are strongly
encouraged to specify default behavior either by using these directives or by including
upc_strict.h or upc_relaxed.h.

The pragmas shal occur either outside externa declarations or preceding dl explicit
declarations and statements insde a compound statement. \When they are outside
externd declarations, they apply until another such pragma or the end of the trandation
unit. When insde a compound statement, they apply until the end of the compound
satement; at the end of the compound statement the state of the pragmasis restored to
that preceding the compound statement. If these pragmas are used in any other context,
their behavior is undefined.

28

7 Library

7.1 Standard headers

1 Thissubsection providesthe UPC paralled extensons of section 7.1.2 in [ISO/SECOQ].
2 The standard headers are
<upc_grict.h> <upc_relaxed.h> <upc.h>
3 upc_grict.h shal contain at leadt:
#pragma upc strict
#i ncl ude <upc. h>
4 upc_relaxed.h shdl contain at least:
#pragma upc rel axed
#i ncl ude <upc. h>
5 upchghdl contan at least:

#define barrier upc_barrier
#define barrier_notify upc_notify
#define barrier_wait upc_wait
#define forall upc_forall

#define fence upc_fence

7.2 General utilities

1 Thissubsection providesthe UPC pardlel extensions of section 7.20 in [I|SO/SECOQ).

29

7.2.1 Termination of al threads
Synopsis

upc_gl obal _exit(int status)

Description
1 upc_gl obal _exit ()will flushdl I/O, rdease dl memory, and terminate the
execution for dl active threads.

7.3 Memory allocation functions

7.3.1 Theupc_gl obal _al | oc function

Synopsis
1 #i ncl ude <upc. h>
shared void *upc_gl obal _alloc(size_t nblocks, size_t
nbyt es) ;
nbl ocks : nunber of bl ocks

nbytes : bl ock size

Description

1 Allocates a contiguous shared memory space blocked as if the following declaration were
used:

shared [nbytes] char[nbl ocks * nbytes].

2 Intended to be cdled by one thread; no synchronization with other threadsisimplied. If
cdled by multiple threads, dl threads which make the call get different alocations.

7.3.2 Theupc_al | _al | oc function

Synopsis
#i ncl ude <upc. h>
shared void *upc_all _alloc(size_t nblocks, size_t
nbyt es) ;
nbl ocks : nunber of bl ocks

nbytes : bl ock size

Description

upc_al | _al | oc isacdllective function, with implied synchronization before dl
threads execute the function call.

upc_al | _al | oc dlocates memory with alayout asif the following declaration were
used:

shared [nbytes] char[nbl ocks * nbytes].
Theupc_al | _al | oc function returns the same pointer vaue on al threads.

The dynamic lifetime of an dlocated object extends from the time any thread completes
thecdl toupc_al | _al | oc until dl threeds have dedllocated the object.

7.3.3 Theupc_| ocal _al | oc function

Synopsis

#i ncl ude <upc. h>

shared [] void *upc _local alloc(size_t nblocks, sizet

nbyt es) ;
nbl ocks : nunber of bl ocks

nbytes : bl ock size

31

Description
Returnsapointer tonbl ocks * nbyt es bytesof shared memory space with affinity
to the calling thread and with type:

shared[] void *.
upc_Il ocal _al | oc implies no synchronization with other threads.

upc_l ocal _all oc issmilartormal | oc () except that it returns a shared pointer

vaue. It isnot a collective operation.

Congraints

The return vaue of the dlocation functions shall be cast to a shared pointer of the correct

block size.

7.3.4 Theupc_f r ee function

Synopsis
#i ncl ude <upc. h>

voi d upc_free(shared void *ptr);

Description

Theupc_f r ee function frees the dynamicaly alocated shared memory pointed to by
ptr. If ptr isanull pointer, no action occurs. Otherwisg, if the argument does not
match a pointer earlier returned by theupc _| ocal _al | oc,upc_gl obal _al | oc,
orupc_al |l _al | oc function, or if the space has been dedllocated by a previous cal to
upc_fr ee, thebehavior is undefined.

7.3.5 Theupc_t hreadof function

Synopsis
#i ncl ude <upc. h>

Size_t upc_threadof(shared void *ptr);

Description
Theupc _t hr eadof function returns the number of the threed that has affinity to the
shared object pointed to by pt r .

7.3.6 Theupc_phaseof function

Synopsis
#i ncl ude <upc. h>

size_t upc_phaseof (shared void *ptr);

Description

Theupc_phaseof function returns the phase field of the shared pointer argument.

7.3.7 Theupc_addr fi el d function

Synopsis
#i ncl ude <upc. h>

Ssize_ t upc_addrfield(shared void *ptr);

Description
Theupc_addr fi el d function returns an implementation-defined vaue reflecting the
“local address’ of the object pointed to by the shared pointer argument.

7.4 Locks

7.4.1 Type

The type declared is
upc_l ock_t

Thetypeupc_| ock_t isanopague UPC type. Variablesof typeupc | ock _t are
meant, therefore, to be manipulated through pointers only.

7.4.2 Theupc_| ock_i nit function

Synopsis
#i ncl ude <upc. h>

void upc_lock_ init(upc_lock t *ptr);

Description
Initidizesthe lock pointed to by pt r . Aftertheupc | ock i ni t functionis
completed, the first thread cdling theupc | ock function will succeed in obtaining this

lock.

Intended to be called by one thread; no synchronization with other threads isimplied.

7.4.3 Theupc_gl obal | ock_al I oc function

Synopsis
#i ncl ude <upc. h>

upc_l ock_t *upc_gl obal | ock_alloc(void);

Description
Theupc_gl obal _| ock_al | oc function dynamicdly alocates alock and returns a
pointer to it.

Thelock pointed to isinitidized inthesameway upc_| ock _init (upc_| ock _t

*pt r) would have doneit.

Intended to be caled by one thread; no synchronization with other threads isimplied.

7.4.4 Theupc_al |l | ock_al | oc function
Synopsis

#i ncl ude <upc. h>

upc_lock_t *upc_all _lock_alloc(void);
Description

Theupc_al | | ock_al | oc function dynamicadly alocates alock and returns a
pointer toit. Theupc_al | _| ock_al | oc functionisa collective function, with

implied synchronization before dl threads execute the function call. All threads receive
the same pointer vaue.

Thelock pointed to isinitidized inthe sameway upc_| ock i nit (upc_| ock_t

*pt r) would have doneit.

7.4.5 Theupc_| ock function

Synopsis
#i ncl ude <upc. h>

voi d upc_| ock(upc_lock t *ptr);

Description
Theupc_I| ock function locks ashared varigble, of typeupc _| ock _t , pointed to by
the pointer given as argument.

If the lock is not used by ancther thread, then the thread making the cal gets the lock and
the function returns. Otherwise, the function keegps trying to get access to the lock.

7.4.6 Theupc_| ock_att enpt function

Synopsis
#i ncl ude <upc. h>

int upc_lock attenpt(upc_lock t *ptr);

Description
Theupc_| ock_at t enpt functiontriesto lock ashared variable, of type
upc_I| ock_t , pointed to by the pointer given as argument.

If the lock is not used by ancther thread, then the thread making the cal gets the lock and

the function returns 1. Otherwise, the function returns O.

7.4.7 Theupc_unl ock function

Synopsis
#i ncl ude <upc. h>

voi d upc_unl ock(upc_lock t *ptr);

Description

Theupc _unl ock function freesthe lock and does not return any vaue.

7.5 Shared String Handling

7.5.1 Theupc_nentpy function

Synopsis

#i ncl ude <upc. h>

voi d upc_nencpy(shared void *dst,
shared const void *src,

size_t n);

Description

Theupc_nmentpy function copies ablock of memory from one shared memory areato
another shared memory area. The number of bytes copied isn. If copying takes place
between objects that overlap, the behavior is undefined.

Theupc_nmencpy function treatsthedst and sr ¢ pointersasif each of them pointed
to a shared memory space on a Single thread and therefore had type:

shared [] char[n]

The effect is equivaent to copying the entire contents from one shared array with this

type (thesr ¢ aray) to another shared array with thistype (thedst array).

7.5.2 Theupc_nenget function

Synopsis
#i ncl ude <upc. h>
voi d upc_nenget (void *dst, shared const void *src,

size_t n);

Description

Theupc_menyget function copiesablock of memory from a shared memory areato a
private memory areaon the caling thread. The number of bytes copied isn. If copying
takes place between objects that overlap, the behavior is undefined.

Theupc_nmenyget function treatsthesr ¢ pointer asif it pointed to a shared memory
gpace on asngle thread and therefore had type:

shared [] char[n]

The effect is equivaent to copying the entire contents from one shared array with this
type (thesr c array) toalocd array (thedst array) declared with the type

char[n].

37

7.5.3 Theupc_nenput function

Synopsis
#i ncl ude <upc. h>
voi d upc_nenput (shared void *dst, const void *src,

size_t n);

Description

Theupc_nmenput function copies ablock of memory from the cdling thread's privete
memory areato a shared memory area. The number of bytes copied isn. If copying takes
place between objects that overlap, the behavior is undefined.

Theupc_menput isequivdent to copying the entire contents from aloca array (the
Sr c array) declared with the type

char [n]

to ashared array (thedst array) with thetype

shared [] char[n]

7.5.4 Theupc_nenset function

Synopsis
#i ncl ude <upc. h>
voi d upc_nenset (shared void *dst, int c,

size_t n);

Description
Theupc_menset function copiesthe vaue of ¢, converted to an unsigned char, to a

shared memory area. The number of bytes setisn.

2 Theupc_menset functiontreatsthedst pointer asif it pointed to a shared memory
gpace on asngle thread and therefore had type:
shared [] char[n]
The effect is equivalent to setting the entire contents of a shared array with this type (the
dst aray) tothevauec.

References

[CARLSON99] W. W. Carlson, J. M. Draper, D.E. Culler, K. Ydick, E. Brooks, and K.

Warren. Introduction to UPC and Language Specification. CCS-TR-99-157. IDA/CCS,
Bowie, Maryland. May, 1999.

[1SO/SEC00] ANSI. Programming Langauges-C. | SO/SEC 9899. May, 2000.

39

Appendix A: UPC versus ANSI C section

numbering
UPC specifications ANSI C specifications
subsection subsection
1 1
2 2
3 3
4 4
5 5
6 6
6.1 6.1
6.2 6.4.2.2
6.3 6.5
6.4 6.7
6.4.1 6.7.3
6.4.3 6.7.5
6.5 6.8
6.6 6.10
7 7
7.1 7.1.2

Table Al. Mapping UPC subsection to ANSI C specifications subsections

